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Extrapolation of Proton Electromagnetic Form Factor* 
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We use the assumed analytic properties of the proton electromagnetic form factors G{t) by performing a 
conformal transformation to a new variable 77 such that the form factor is analytic inside the unit circle in the 
complex 77 plane. We fit the data with power series in 77 and extrapolate to the circle to find the spectral 
function. For both electric and magnetic form factors, we find spectral functions with a broad peak around 
625 MeV, and a negative excursion above 1 BeV. We examine the validity of our extrapolation procedure by 
tests on several types of artificial data. Our procedure can reproduce a spectral function with a broad peak, 
but is not so successful in reproducing a narrow resonance, or a pair of narrow resonances close together. 

L INTRODUCTION 

NUCLEON electromagnetic form factors^ are gen­
erally believed to be analytic functions of the 

variable t, the negative squared four-momentum trans­
fer, in the entire / plane except for a cut from some 
(positive) to to infinity. The physically accessible region 
for electron-scattering experiments is / real and non-
positive. (See Fig. 1.) The form factor G(t) in the physi­
cal region, which is real,^ can be expressed as an integral 
along the cut involving the discontinuity in g(t) across 
the cut (or in other words the imaginary part g oi G 
just above the cut): 

1 r g{f)dt' 
0(1) = - +G(--). 

T J to i i 
(1) 

We use a subtracted dispersion relation: G(—^) is the 
subtraction constant. We wish to use measured form 
factors G(t) in a finite part of the physical region to 
obtain the spectral function g(f). 

It is well known that Eq. (1) must be written four 
times: for the isovector and isoscalar portions of the 
electric and magnetic form factors, respectively. In this 
paper we limit ourselves to the use of measured proton 
form factors, since these measurements are at present 
much more accurate than those for the neutron. That 
is, we deal with the sum of isoscalar and isovector form 
factors in G(f) and therefore the sum of isovector and 
isoscalar spectral functions g(/0- Physically, the spectral 
function is closely related to the mass spectrum of 
strongly interacting systems of spin 1~, baryon number 
and strangeness zero and of appropriate isotopic spin. 
Thus, in the isovector case the lowest possible mass is 
^0=4/^/, the threshold for two pions: The isoscalar 
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system must have a mass of at least 3 pions and has 

We shall consider Eq. (1) for the electric and mag­
netic^ form factors GE and GM for the proton, rather 
than the Dirac and PauH form factors Fi and F2. A 
main reason for this choice is that for large values of t 
the magnetic form factor GM is much more accurately 
determined by present data than are Fi or 2̂ 2. 

Many different workers have used measured form 
factors to determine the spectral functions: We shall 
review briefly a small part of this work. If we assume 
the spectral function to be sharply peaked, g{t') can be 
approximated by a delta function at some resonance 
position IR, giving a one-pole form for G. Data on g{t'), 
can be used to determine both the strength of the reso­
nance and the value of IR. Fubini,^ and Hofstadter,^ and 
Kirson^ have found such fits to the data, but only if IR 
is as low as 20/x7r̂ , corresponding to a resonant mass of 
about 600 MeV. For example, using the experimental 
data for the proton magnetic form factor given in 
Table I, Kirson finds a statistically acceptable x̂  value 
of 15.2, for 17 deg of freedom. Ball and Wong^ have 
argued that this pole can be interpreted as the (iso­
vector) p meson of mass 750 MeV, provided its width is 
taken into account. However, this argument does not 
apply to the corresponding isoscalar resonance, the o) 

FIG. 1. The/plane 
for form factors. 
The physical region 
is four-momentum 
transfer / real and 
nonpositive. The t 
plane has a cut start­
ing at positive real 
threshold to. 

I m t 

• - measurements - Re t — • 

3 L. N. Hand, D. G. Miller, and R. Wilson, Rev. Mod. Phys. 
35, 335 (1963). 
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Hofstadter (W. A. Benjamin and Company, Inc., New York, 
1963), paper 79. 
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FIG. 2. The shaded 
region shows the 
region in the IR—IS 
plane giving statisti­
cally acceptable two-
pole fits to the proton 
form factors. Here IR 
and ts are the posi­
tions of the two poles. 

TABLE I. Data used for proton magnetic form factor. Compila­
tion of proton magnetic form factors GM and their standard errors, 
as of February 1963. The relation between t and ?? is given in 
Eq. (2), using 5 = 2, and /o=2.0F-2. 

13 J, 15 

meson of mass 790 MeV and extremely narrow width. 
It therefore seems clear that a one-pole fit to current 
proton form-factor measurements is not satisfactory if 
we require consistency with other experimental evidence 
on the position of the pole. 

Other workers '̂̂ '̂  have introduced extra parameters 
into the proton's spectral function by assuming that it 
could be approximated by two poles. They find that a 
two-pole fit (with subtraction constants) can be achieved 
with reasonable positions for the two poles. One pole 
can be chosen at IR near the p and co resonances while a 
second can be chosen at t^ to represent the average be­
haviour of the proton's spectral function above 1 BeV. 
Kirson and Levinger^ find a variety of fits to the data 
for GE and GM which are statistically acceptable, i.e., 
the hatched region shown in Fig. 2. The positions of the 
two poles cannot be determined from form-factor data 
alone. All the fits have the property that the coefficient 
of the pole in the 750-MeV region (//2=15F-2) is 
opposite in sign to the coefficient of the pole in the 
1200-MeV region (/,=40F-2) but of the same general 
size. The combination of the two simulates a Clementel-
Villi formula for one pole at a lower mass. Kirson^ has 
made a fit of this type identifying the higher mass pole 
with the <j> resonance (1020 MeV) and the lower mass 
one with a mixture of p and co. 

The problem of obtaining the spectral function g{t') 
from the measured G{t) is essentially that of using the 
analytical form of G [Eq. (1)] to extrapolate from the 
physical region (^<0) to the region t>tQ, Most of the 
fits discussed above achieve this by assuming the extra­
polated form to be a sum of delta functions and then 
fitting the parameters to the data. This has two draw­
backs. First, the location of and behavior at the thresh­
old is nowhere used in the choice of the extrapolated 
form, and therefore we are not using some available 
information. Secondly, the extrapolated form depends 
in a very nonlinear way on the parameters (positions 
and strengths of the poles) which introduces complica­
tions in the statistical fitting. Specifically, the param­
eters have to be introduced in pairs, with the result 
that while a one-pole fit may not be quite good enough, 
the two-pole fits involve one more parameter than the 

q'^-t 
inF-2 

0.0 
1.0 
1.6 
2.0 
2.98 
4.56 
7.0 
9.0 

10.0 
11.5 
13.0 
15.0 
16.5 T 
18.0 ; 
21.5 
25.0 
30.0 
35.0 
40.0 
45.0 

V 

0.333 ; 
0.240 
0.197 1 
0.171 ; 
0.118 
0.049 

-0.029 
-0.079 
-0.101 
-0.130 
-0.156 
-0.186 

^'i -0.206 
' -0 .226 
-0.263 
-0.295 
-0.333 
-0.366 
-0.393 
-0.416 

GM 

2.793 
! 2.508 

2.394 
2.234 

12.034 
1.650 
1.370 
1.130 
1.120 
1.020 
0.930 
0.890 
0.730 
0.640 
0.540 
0.464 
0.382 
0.314 
0.232 
0.238 

Error 

0.000 
0.036 
0.025 
0.036 
0.016 
0.099 
0.360 
0.068 
0.045 
0.052 
0.056 
0.052 
0.023 
0.038 
0.022 
0.012 
0.014 
0.012 
0.018 
0.022 

Ref. 

static value 
a, b 

a 
b 
c 
d 
d 
d 
e 
d 
d 
d 
d 
d 
d 

d,f 
f 
f 
f 
f 

a D. J. Drickey and L. N. Hand, Phys. Rev. Letters 9, 521 (1962). 
b B. Dudelzak, G. Sauvage, and P. Lehmann, Nuovo Cimento 28, 18 

(1963). (We have not used the GMP values quoted by these authors at 
g2 =0.30F-2 and g2 =0.49F-2.) 

c P. Lehmann, R. Taylor, and R. Wilson, Phys. Rev. 126, 1183 (1962). 
d F. Bumiller, M. Croissiaux, E. Dally, and R. Hofstadter, Phys. Rev. 

124, 1623 (1961), as analyzed by M. W. Kirson and J. S. Levinger, Phys. 
Rev. 130, 1549 (1963). 

e T. J. Janssens, R. Hofstadter, E. B. Hughes, and M. R. Yearian, Bull. 
Am. Phys. Soc. 7, 620 (1962). 

* K. Berkelman, M. Feldman, R. M. Littauer, G. Rouse, and R. R. 
Wilson, Phys. Rev. 130, 2061 (1963). 

data can determine. Hence, there is a wide variety of 
such fits (see Fig. 2); and the number of parameters 
has to be reduced by requiring one pole to occur at the 
p mass, in order to tie down the fit. 

In the present paper we make use of a different 
method of extrapolating which avoids both these diffi­
culties, being linear in the parameters used and explicitly 
making use of the threshold behavior. The technique is 
to use a conformal transformation, discussed by many 
authors^^ which transforms the cut / plane to the interior 
of the unit circle. The transformed data are then fitted 
by a polynomial in the new variable whose coefficients 
can be used to extrapolate to the spectral function. The 
information about the location and nature of the thresh­
old is used in the specification of the transformation (the 
extrapolated spectral function automatically vanishes 
below ô), and also by an explicit constraint requiring the 
slope of g{t^) to vanish at to-

The results of this procedure seem to indicate that 
the proton form-factor spectral functions peak fairly 
sharply near the p mass and become negative at higher 
energies. This agrees very well with the conclusions of 

8 S. Goto, Nuovo Cimento 27, 1249 (1963). 
9 M. W. Kirson, Phys. Rev. 132, 1249 (1963). 

low. R. Frazer, Phys. Rev. 123, 2180 (1961); C. Lovelace, 
Nuovo Cimento 25, 730 (1962); D. Atkinson, Phys. Rev. 128, 
1908 (1962); R. Theis, Cambridge Photon Conference, 1963 
(unpublished), and private communication; J. D. L. Zeiler 
(private communication). 



E X T R A P O L A T I O N O F P R O T O N E L E C T R O M A G N E T I C F O R M F A C T O R S B1343 

the two-pole fits, but it is encouraging that at no stage 
do we have to require any peaking near the p mass. 

Section I I contains details of the method of fitting and 
the constraints imposed. In Sec. I l l we apply these 
techniques to the data on the proton form factors GE 
and GM* Section IV is devoted to the question of the 
significance of our extrapolations. Most of our discussion 
is applicable to other problems; e.g., ir—p scattering. 
The statistical uncertainty is easily assessed, but in 
order to obtain some idea of the reliability of the method 
we construct artificial data from known spectral func­
tions and study the results of extrapolating by the same 
technique. In the final section we discuss our results for 
the form-factor spectral functions and compare with 
other fits to the experimental data. 

II. EXTRAPOLATION PROCEDURE 

The measured form factors give values, for / < 0 , of a 
function G{t) whose analytic structure is given by Eq. 
(1). We introduce a new variable 

, = [b- (l-0o)^/^]/C6+ {l-t/hY"'}, (2) 

defining a conformal transformation^^ which, taking the 
appropriate branch of the square root, maps the entire 
t plane of Fig. 1 into the interior of the unit circle shown 
in Fig. 3. The cut from ô to + oo goco into the boundary 
of the unit circle, the upper semicircle corresponding to 
the upper branch of the cut. The origin goes into the 
point (b-'l)/(b+l) which by suitable real choice of b 
can be placed on the real rj axis anywhere between 
— 1 and + 1 . We therefore consider a new function 
K(r}) = G(t)j which is analytic inside the unit circle, and 
can be expanded in a power series 

^ ( ^ ) = E (^nV""' (3) 

For real t>to Eq. (2) can be written 

7 7 = e x p K W ] , (4) 

cos^= (b'+l-t/to)/(b'- 1+t/to), 

and hence 

g{t) = lmG(t) = lmKlexp(i^)']= E an ^inn^it). (5) 

Our procedure will be to assume that the power series 
(3) can be approximated by a few terms, determine their 
coefficients an which best fit the data and use these 
values in (5) to evaluate g(t). 

In discussing the validity of this procedure we have to 
be careful to formulate the information we are seeking. 
If we were to ask for a point by point quantitative 
evaluation of g(t) two serious questions would arise. 
Firstly, there is the question of the convergence of the 
procedure even if we could determine an arbitrary num­
ber of coefficients a^. This has been considered in a 

FIG. 3. The T] plane 
for form factors. The 
physical region is 
along the real axis 
from - 1 to (b-l)/ 
(b+1). The cut is 
along the upper semi­
circle; angle ^ is 
given in Eq. (4). 

rather similar situation by Atkinson,!^ who concludes in 
fact that except at higher branch points the procedure 
should formally converge. Secondly, there is the question 
of the uncertainty introduced into the extrapolation by 
taking only a few terms of the series, which are all that 
can be determined from present data. I t is fairly clear 
that, in fact, the error on any given point is liable to be 
quite large, and further, that the extrapolated value of g 
for any particular value of / may be sensitive to such 
things as the choice of the parameter b. However, we 
may ask a somewhat weaker question: Does the extra­
polated function reproduce the main qualitative features 
of the true spectral function? The qualitative features in 
question are such things as dominance by a low-energy 
resonance or the lack thereof; change of sign of g(t) in 
some energy region, etc. In order to answer this question 
we have taken a number of artificial known spectral 
functions; used Eq. (1) to calculate a series of values of 
G{t) and then introduced random errors so as to simulate 
actual data. In Sec. IV we discuss the fits obtained with 
such "pseudodata." For the moment we remark merely 
that the results do seem to bear out the extrapolation 
procedure as a qualitative tool. Accordingly we do not 
need to consider further the thornier problems of con­
vergence or uniqueness. 

The data were fitted by trying to determine the first 
N coefficients of the power series. This is not necessary 
but is the most natural choice for two reasons. Firstly, 
these are the terms which are most important for small 
\r]\, which is the experimental region. Secondly, the 
neglected higher terms correspond to rapidly oscillating 
components of the spectral function, which one can hope 
will not be so essential to its main qualitative behavior. 

The parameter b was chosen for each set of data so as 
to spread the data points about equally on both sides 
of the origin in the rj plane. This increases the total range 
of values of r} while keeping the range of 1771 as small as 
possible, which provides the best determination of the 
fewest parameters. If b were chosen so as to make the 
data very asymmetric and require larger values of | r? | , 
a reasonable statistical fit would require a larger number 
of coefficients but as these do not really imply more 
information their values would be highly correlated. 
Variation of b can greatly change the relation between 
the angle J and /: Although the final fit was made with 
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h chosen as indicated above, fits were also made with h 
varying to confirm that the general behavior of the 
spectral function remained the same. 

The data were required to satisfy a linear constraint 
a t / = 0 ; 

GE{0)^i a . ^ C ( & - l ) / ( & + l ) > = 1 . 0 , 
^=0 (6) 

where 
dfi > ^n are the coefficients for the electric and 

magnetic form factors, respectively. A second constraint 
was sometimes used: the requirement that the slope of 
g{t) vanish at /== ô C^he function g{i) automatically 
vanishes there as is easily seen from Eqs. (4) and (5)]. 
The requirement of zero slope corresponds to the fact 
that there is a centrifugal barrier resisting the generation 
of l " states. This condition is easily expressed as 

z=0. (7) 

I t is clearly not a rigorous procedure to apply this con­
dition to the truncated series instead. Furthermore for 
the isoscalar part of the form factor ô is actually helow 
threshold. However, the condition 

N 

E nan=0, (8) 

while not the correct constraint, should help to ensure 
that the slope of the extrapolated function does not 
behave too erratically near t=to. Fits were made both 
with and without this constraint. 

The fitting was carried out using standard least-
squares methods, modified to allow the inclusion of the 
linear constraints (6) and (8). The modification is 
particularly simple in the case of linear constraints; as 
it does not seem to be generally known the details are 
given in the Appendix. The fits were made with an 
increasing number of parameters until the value of x^ 
stopped to improve. If the experimentally quoted errors 
are approximately Gaussian and are independent, then 
for a good fit x^ should be of the order of the number 
of degrees of freedom. As might have been expected 
from the two-pole fits, the data seem to determine three 
free parameters. These can be the coefficients of a cubic 
without the second constraint (8) or the coefiicients of a 
quartic making use of the second constraint. In addition 
to watching the behavior of the x^, another check on the 
correct number of parameters can be obtained from the 
behavior of the error matrix. When too many parameters 
are used, the parameters are no longer well determined, 
and this excessive freedom shows up as a large statistical 
uncertainty or ^'error^' on the extrapolated points. I t 
should be emphasized that this is really the only signifi­
cance which should be attached to these '^errors"; they 

are definitely not estimates of the expected rms devia­
tion from the true value of the spectral function. 

III. FITS TO MAGNETIC AND 
ELECTRIC FORM FACTORS 

We shall now apply the methods discussed in the 
previous sections. For the magnetic form factor of the 
proton, GM) we use the 19 data points given in Table I. 
The magnetic form factors are given^^ in Table I to an 
accuracy of better than 5 % for four-momentum transfer 
squared q^ in the range 0<q^<35¥~^, and to better than 
10% accuracy for the two highest values of q^. 

The fits obtained by using these data tend to give 
very large values for the extrapolated value G(t) at 
t= — co (77=—1). In some cases, therefore, we have 
introduced a fictitious data point 

G ( - o o ) = 0.0±0.2G(0), (9) 

with fairly large error so as to prevent the extrapolated 
value from becoming too large. This can be regarded, 
on the one hand, as a check to make sure that the 
spectral function is not too sensitive to the behavior at 
physical but inaccessibly large momentum transfers, 
and on the other, as a search for possible evidence on the 
subtraction constant. 

In discussing the results we shall refer to the fits as 
''free,'' ' 'constrained," or "restricted." Free fits are those 
carried out subject only to the constraint (6) on the 
static form factors. Constrained fits are those subject in 
addition to the constraint (8) affecting the threshold 
behavior of the spectral function. Restricted fits are 
those in which the extra data point (9) has been used. 

Recent measurements at high values oi t support a 
restriction such as Eq. (9) on both GM and GE- The meas-
urements^^ ^t the Cambridge linear accelerator show that 
both (real) form factors decrease with increasing q^ in 
the range 4:5<q^<125F~^; there is no evidence for 
"cores" or subtraction constants. The experiments^ on 

TABLE II. Goodness of fit versus degree of polynomial. The x^ 
values are for the fits to the 19 values of GM in Table I, fitted by 
polynomials in 17 of degree N; <^=xVdegrees of freedom. 

N 

2 
3 
4 
5 
6 

Free polynomial 

x' 
147 
13.8 
12.4 
11.8 

0 

8.6 
0.86 
0.83 
0.84 

Constrained 
x' 

788 
77.4 
16.2 
12.8 
11.9 

<f> 

43.7 
4.55 
1.02 
0.85 
0.85 

Constrained and 
restricted 

x' 
832 

77.5 
50.2 
13.2 
12.6 

4> 

44 
4.3 
2.96 
0.83 
0.84 

11 We made an error of 0.7 standard errors in the datum for 
g2=15F~2; this should have quite a small effect on the fit. 

12 K. W. Chen, A. A. Cone, J. R. Dunning, S. G. F. Frank, 
N. F. Ramsey et aL, Phys. Rev. Letters 11, 561 (1963). 

13 M. Conversi, Siena Conference on Elementary Particles, 
October 1963 (unpublished); M. Conversi, J. Massan, Th. Muller, 
and A. Zichichi, Phys. Letters 5, 195 (1963); K. J. Barnes, Nuovo 
Cimento28, 284 (1963). 
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TABLE III. Coefficients for constrained fits to GM- The coeffi­
cients an and diagonal errors Aan for constrained polynomials 
of degree N fitted to the GM data of Table I. 

TABLE V. Different fits to GM in physical region. Values of the 
magnetic form factor GM, and statistical errors AGM for the 
polynomial fits of Table IV. 

N = 5 N=6 

Aan Mn f(F-2) 

Constrained Constra ined and 
Free cubic quar t i c restr ic ted quint ic 
GM AGM GM AGM GM AGM 

L555 
4.180 

-0.065 
-4.885 
2.651 

0.012 
0.049 
0.132 
0.410 
0.339 

1.532 
4.320 
0.743 

-6.785 
-2.423 
4.848 

0.017 
0.091 
0.461 
1.116 
2.792 
2.648 

1.517 
4.279 
1.633 

-4.943 
-11.00 
-8.17 

15.35 

0.024 
0.100 
1.041 
2.232 
9.42 

13.9 
16.11 

proton-antiproton annihilation into an electron-posi­
tron pair gives a preliminary upper bound on a linear 
combination of GE^ and Gj/ in the time-like region 
^^<—90F~2, where the form factors can be complex. 
Our fits to the data of Table I are meant to illustrate our 
procedure of obtaining the spectral function from a 
given set of experimental data. In Sec. V we discuss 
work that will be of interest as further data becomes 
available. 

Throughout this section we use the conformal trans­
formation Eq. (2), for ^ = 2 , and threshold value 
/ O = 4 M . 2 = 2 . 0 F - 2 . 

In Table I I we examine the values of y^ versus degree 
N of the polynomial in t] used to fit the data of Table I. 
W ê also give the ratio 

0=xVdegrees of freedom. (10) 

This ratio (j> should have a value near unity for a good 
fit. There are (19-N) degrees of freedom for the free 
polynomial, and (20-N) for the constrained polynomial. 

We see from Table I I that in each case x^ at first drops 
very rapidly with increasing N, and then levels off rather 
abruptly. For the free polynomial it is obvious that 
iV=3 is the correct value to use for this type of fit to 
the data of Table I. For the constrained polynomial 
one might wonder whether iV"=4 or iV=5 should be 
used, since the value of x^ drops from 16.2 to 12.8. We 
argue that iV= 4 should be used, since the value 0 = 1.02 
is already reasonable, and use of TV = 5 gives a large in­
crease in the standard errors of the coefficients a^. (See 
Table III.) For the constrained and restricted poly-

TABLE IV. Coefficients for best fits to GM^ Coefficients an and 
diagonal errors Aan for different polynomial best fits in 77 to 
magnetic form factors of Table I. 

n 

0 
1 
2 
3 
4 
5 

Free cubic 
an Aan 

1.545 0.011 
4.235 0.055 
0.334 0.102 

-5.418 0.469 

Constrained quartic 
an Aan 

1.555 0.012 
4.180 0.049 

-0.065 0.132 
-4.885 0.410 

2.651 0.339 

Constrained and 
restricted quintic 

an Aan 

1.540 0.012 
4.278 0.061 
0.471 0.127 

-6.198 0.578 
-0.723 0.393 

3.253 0.535 

0.960 
0.88 
0.80 
0.72 
0.64 
0.56 
0.48 
0.40 
0.333 
0.320 
0.200 
0.080 

-0 .040 
-0 ,160 
-0 .280 
-0 .400 
-0 .520 
-0 .640 
-0 .760 
-0 .880 
-1 .000 

2.00 
1.97 
1.90 
1.79 
1.61 
1.26 
1.01 
0.53 
0.00 

- 0 . 1 2 
- 1 . 5 6 
- 3 . 7 8 
- 7 . 3 8 

- 1 3 . 2 
- 2 3 . 3 
- 4 1 . 5 
- 7 8 . 1 

- 1 8 0 
- 4 2 7 

- 1 9 5 8 

1.125 
1.838 
2.372 
2.745 
2.972 
3.070 
3.055 
2.946 
2.793 
2.757 
2.362 
1.883 
1.376 
0.898 
0.504 
0.251 
0.195 
0.392 
0.898 
1.769 
3.062 

0.395 
0.299 
0.219 
0.154 
0.102 
0.062 
0.032 
0.011 
0.000 
0.002 
0.011 
0.012 
0.011 
0.010 
0.008 
0.010 
0.037 
0.085 
0.158 
0.260 
0.398 

3.438 
3.444 
3.442 
3.420 
3.368 
3.278 
3.147 
2.972 
2.793 
2.754 
2.354 
1.887 
1.388 
0.907 
0.503 
0.254 
0.245 
0.579 
1.370 
2.746 
4.847 

0.109 
0.101 
0.088 
0.072 
0.054 
0.037 
0.021 
0.008 
0.000 
0.001 
0.010 
0.012 
0.011 
0.010 
0.008 
0.011 
0.043 
0.108 
0.216 
0.383 
0.623 

2.636 
2.729 
2.860 
2.986 
3.074 
3.103 
3.061 
2.944 
2.793 
2.757 
2.365 
1.882 
1.370 
0.892 
0.505 
0.249 
0.137 
0.149 
0.215 
0.213 

-0 .045 

0.218 
0.197 
0.165 
0.128 
0.092 
0.059 
0.032 
0.012 
0.000 
0.002 
0.011 
0.012 
0.011 
0.011 
0.008 
0.010 
0.032 
0.073 
0.148 
0.290 
0.545 

nomial, it is clear that we should use 7V= 5. We see that 
the data of Table I cover a large enough range and have 
sufficient accuracy to determine 3 adjustable parameters 
for the free cubic, or constrained quartic. Adding the 
restriction Eq. (9) for G{~ 00) allows the determination 
of a fourth adjustable parameter. The fact that we can 
fit with 0 near unity shows that the errors quoted in 
Table I are realistic. 

Table I I I illustrates the dangers of introducing more 
adjustable parameters than are needed to fit the data 
with a value of 0 near unity. The constrained quartic 
fit (iV=4) already has appreciable errors in the coeffi­
cients an, particularly for large n, (For brevity we give 
here only the noncorrelated errors rather than the 
entire error matrix.) The errors are about 1% for small 
n^ and about 10% for large n. For a constrained quintic 
fit to the data, the errors for small n increase by about 
a factor of 2 compared to the constrained quartic, while 
the errors for large n become quite large. The values of 
^0 and ai change very little, and the errors in them 
remain small, even when we increase N to 6, since ao 
and ai are determined quite accurately by the data in 
the region I77I < 0 . 1 . 

Table IV gives the coefficients for different polynomial 
fits to the magnetic form factor, for a free cubic, a con­
strained quartic, and a constrained and restricted 
quintic. Again we give only the diagonal errors. We 
observe again that ao and ai are quite accurately deter­
mined, and are practically unchanged from one fit to 
another. The value of a^ is determined to relatively 
poor accuracy—namely about J, or 10% of its value. 

The sets of values of an given in Table IV are used 
first to give the (real) form factor for real 77, and then to 
give the imaginary part of the form factor at the cut; 
i.e., the spectral function. 
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TABLE VI. GM spectral functions. The spectral function is found 
using the coefficients <?» from Table IV for three different fits to 
the magnetic form factor. The mass is 280 P-'^; the angle ^ is found 
from t by Eq. (4), for & = 2. 

FIG. 4. Fits to the magnetic form factor of the proton, for real 
7]. The points with errors show the data of Table I ; the dashed 
curve is the free-cubic fit; the sohd curve is the constrained-quartic 
fit; and the dash-dot curve is the restricted- and constrained-
quintic fit. See Table IV. The triangles represent new data not 
used in the fit. 

Table V gives the form factor KM(.V) for real rj for the 
three different polynomial fits of Table IV. The errors 
in Kuiri) are found using the complete error matrix. 
Thus, there is no error for the static form factor {y]—\) 
since the static magnetic moment has been used as a 
constraint. In the region --0.4<77<0.333, where there 
are accurate experimental data, all three fits have small 
errors (of order 0.01) and agree with each other within 
these small errors. Of course, this must be the case, since 
all three fits have acceptable values of x .̂ The three fits 
each show much larger errors, and disagree greatly 
(many standard errors of the difference) as we extra­
polate either towards ^=1 {t=h, in the nonphysical 
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FIG. 5. Spectral function for the proton magnetic form factor, 
versus mass of the intermediate state in MeV. The dashed curve 
is the free-cubic fit; the solid curve is the constrained-quartic fit; 
the dash-dot curve is the constrained- and restricted-quintic fit. 
See Table VI. 

^ (deg) 

0 
14.1 
25.8 
37.3 
47.5 
58.1 
66.1 
74.6 
83.3 
89.9 
96.1 

100 
104 
106 
114 
122 
126 
129 
134 
138 
142 
147 
155 
164 
174 
180 

Mass 
(MeV) 

280 
289 
308 
337 
373 
418 
459 
509 
571 
622 
683 
718 
757 
800 
903 

1037 
1120 
1217 
1333 
1474 
1647 
1867 
2545 
4000 
9333 
00 

Free cubic 
g(t) 

0 
-2 .48 
-3 .18 
-2 .16 

0.18 
3.32 
5.79 
7.96 
9.37 
9.66 
9.29 
8.84 
8.21 
7.41 
5.36 
2.91 
1.63 
0.38 

-0 .78 
-1 .81 
-2 .65 
-3 .27 
-3 .70 
-3 .03 
-1 .48 

0 

Error 

0 
0.32 
0.46 
0.44 
0.29 
0.09 
0.19 
0.36 
0.49 
0.52 
0.51 
0.48 
0.43 
0.38 
0.23 
0.10 
0.11 
0.18 
0.26 
0.32 
0.38 
0.41 
0.41 
0.32 
0.15 
0 

Constrained 
quartic 

g(t) 

0. 
-0 .09 
-0 .41 
-0 .70 
-0 .41 

0.88 
2.64 
4.99 
7.53 
8.98 
9.90 

10.07 
9.99 
9.64 
8.08 
5.41 
3.76 
1.99 
0.20 

-1 .52 
-3 .05 
-4 .28 
-5 .52 
-4 .82 
-2 .43 

0 

Error 

0 
0.02 
0.12 
0.26 
0.37 
0.36 
0.26 
0.10 
0.27 
0.45 
0.59 
0.64 
0.67 
0.67 
0.58 
0.38 
0.25 
0.13 
0.16 
0.30 
0.43 
0.54 
0.65 
0.55 
0.27 
0 

Constrained 
and restricted 

quintic 
g(t) 

0 
-0 .46 
-1 .97 
-3 .43 
-2 .75 

0.90 
5.27 
9.93 

13.2 
13.8 
12.6 
11.3 
9.62 
7.66 
3.26 

-0 .82 
-2 .38 
-3 .47 
-4 .05 
-4 .11 
-3 .72 
-2 .99 
-1 .16 

0.18 
0.39 
0 

Error 

0 
0.08 
0.35 
0.65 
0.68 
0.35 
0.35 
0.82 

1.1 
1.1 
0.95 
0.78 
0.61 
0.48 
0.57 
0.83 
0.89 
0.88 
0.80 
0.66 
0.51 
0.40 
0.50 
0.56 
0.32 
0 

region) or towards rj= — l (/= —oo). These results are 
also presented in Fig. 4, where we show as circles the 
data of Table I, and as triangles two new Cambridge 
Electron Accelerator (CEA) points.^^ 

Table VI and Figs. 5 and 6 show the extrapolations 
to the unit circle, to determine the spectral function. 
Again, the complete error matrix has been used. We 
present the spectral functions both versus the mass of 
the intermediate state, 280̂ '̂̂  MeV, and versus the 
angle .̂ The free cubic spectral function (dashed line) 
first dips sharply, then has a broad peak around 600 
MeV, and becomes negative again at 1250 MeV. The 
constrained quartic (solid line) has only a small dip 
near threshold. Again we see a marked but broad peak, 
this time at 750 MeV. The spectral function becomes 
negative at 1350 MeV. The restricted and constrained 
quintic (dash-dot line) shows a dip somewhat above 
threshold (angle J about 40°) and a peak at 620 MeV. 
This peak is the narrowest of the three, with full width 
at half-maximum of 300 MeV. The spectral function 
becomes negative at 1000 MeV. 

Ŵe see that the same general feature of a strong peak 
around 650 MeV and a negative spectral function above 
some 1200 MeV persists in all three fits to the magnetic 
form factor. In terms of the angle ,̂ the peak is centered 
near 90°, and has a width decreasing from 55° for the 
free cubic to 40° for the constrained and restricted 
quintic. 

We adopt the same procedures in fitting the data for 

file:///constrained
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TABLE VII. Data used for GE. 

f^-t 
0.30 
0.49 
0.60 
LOO 
LOS 
L60 
2.00 
2.20 
2.98 
4.0 
6.0 

10.0 
14.0 
18.0 
25 
30 
35 
40 
45 

'J 

0.302 
0.284 
0.274 
0.240 
0.237 
0.197 
0.171 
0.160 
0.118 
0.072 
0.000 

-0.101 
-0.173 
-0.226 
-0.295 
-0.333 
-0.366 
-0.393 
-v0.416 

GE 

0.970 
0.932 
0.940 
0.885 
0.884 
0.850 
0.784 
0.790 
0.725 
0.696 
0.526 
0.414 
0.365 
0.310 
0.396 
0.359 
0.258 
0.436 
0.000 

Error 

0.004 
0.009 
0.006 
0.005 
0.009 
0.010 
0.012 
0.006 
0.022 
0.032 
0.021 
0.020 
0.027 
0.026 
0.037 
0.037 
0.044 
0.073 
0.255 

Ref. 

a, b 
b 
a 

a, b 
c 
a 
b 
a 
c 
d 
e 

d, e, f 
e 
e 
g 
g 
g 
g 
g 

a D. J. Drickey and L. N. Hand, Phys. Rev. Letters 9, 521 (1962). 
b B. Dudelzak, G. Sauvage, and P. Lehmann, Nuovo Cimento 28, 18 

(1963). 
c P. Lehmann, R. Taylor, and R. Wilson, Phys. Rev. 126, 1183 (1962). 
d K. Berkelman, M. Feldman, and G. Rouse, Phys. Letters 6, 116 (1963). 
e T. R. Dunning, Jr., K. W. Chen, N. F. Ramsey, J. R. Rees. W. Shaler 

et al., Phys. Rev. Letters 10, 500 (1963). 
f T. J. Janssens, R. Hofstadter, E. B. Hughes, and M. R. Yearian, Bull. 

Am. Phys. Soc. 7, 620 (1962). 
B K. Berkelman, M. Feldman, R. M. Littauer, G. Rouse, and R. R. 

Wilson, Phys. Rev. 130, 2061 (1963). 

the electric form factor, except that we have not made 
a restricted fit. Table VIII gives the coefficients an, and 
their errors, for a constrained quartic fit to the data of 
Table VII. The constrained quartic fit has a x̂  value of 
28.9 for 16 deg of freedom, as compared to a x̂  value of 
61.9 for a constrained cubic fit, and a x̂  value of 28.4 
for a constrained quintic fit. The data on GE thus has 

FIG. 7. Fit to the electric form factor of the proton, for real 17. 
The circles show the data of Table VII; the constrained-quartic 
fit has coefficients shown in Table VIII. The shaded region shows 
the statistical error of the extrapolation. The triangles represent 
new data not used in the fit. 

sufficient range and accuracy to need a fit with 3 adjust­
able parameters, as was the case for the GM data of 
Table I. The large x̂  value for the constrained quartic 
can be ascribed partly to the disagreements among 
different laboratories in the measurements, particularly 
in the range 14:<q^<25F~^, and partly to imposing the 
static limit Gj?(0)= 1.000 as known precisely. We as­
sumed that there were no systematic errors in the data 
not included in the quoted standard errors. 

Figure 7 gives the values found for the electric form 
factor KE{ri)y using the coefficients of Table VIIL The 
spread of the curve shows the standard error, found 
using the error matrix of the coefficients. As in the mag­
netic form factor fit, the error is small (less than 0.02) in 
the region where there are good data points, but rapidly 
becomes large in the region ?;< — 0.3 (g^> 25) where the 
data are either inaccurate, or nonexistent. The sub­
traction constant, given by the fit GE{— 00) = 5.28di:0.83 
seems unreasonably large: See the discussion above of 
restricted fits to GM- The triangles show the new CEA 
data^^ not used in the fits. 

Figure 8 gives the spectral function for the electric 
form factor, using the coefficients of Table VIIL We 
also show the spread in the curve. The spectral function 
of GE is quite similar to that for the constrained quartic 
fit to GM shown in Fig. 5. That is, we see first a small 

TABLE V I I I . Coefficients for fit to GE- The coefficients a„ 
and errors Aan for constrained quartic fit to the GE data of 
Table Vll. 

Aan 

FIG. 6. Spectral function for the proton magnetic form factor, 
versus angle ^. The dashed curve is the free-cubic fit; the solid 
curve is the constrained-quartic fit; the dash-dot curve is the 
constrained- and restricted-quintic fit. See Table IV. 
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FIG. 8. Spectral function for the electric form factor of the 
proton versus the mass of the intermediate state in MeV. The 
constrained-quartic fit has statistical errors given by the shaded 
region. See Table VIII. 

negative dip near threshold, of dubious statistical signifi­
cance. We then see a marked peak at about 700 MeV, 
with a width of 470 MeV. The spectral function goes 
negative near 1200 MeV. 

The experiments^ on proton-antiproton annihilation 
into an electron-positron pair gives preliminary results 
for the total cross section for 2.5 BeV/c antiprotons, 
which is proportional to 

G 2 = | G ^ | 2 ~ ( ^ V 2 M 2 ) | G M | (11) 

At this antiproton energy, ^2= — 175F~2, and —(f/lM'^ 
= 3.9, where M is the nucleon mass. 

For a form factor GE, we have from Eqs. (3) to (5) for 
real coefficients an 

N 

\GE\'^=\Y^ r̂t exp(mj)|2 

= S (^n-\- Z '^Cinam COS(^ — w ) ^ . ( 1 2 ) 
7^=0 n<.m 

Our constrained but nonrestricted fits to GE and GM, 
given in Tables VIII and IV, respectively, give by sub­
stitution in Eqs. (11) and (12) 

G2= 274-130= 157, 

TABLE IX. Influence of range and accuracy of data. Fits to 
artificial data of Clementel-Villi form. All use & = 1, and fit data 
from 77min to ?7max with a free or constrained polynomial of degree N, 

'?mm 

-0.658 
-0 .80 
- 0 . 6 
- 0 . 6 
- 0 . 6 
-0 .92 
-0 .92 
-0 .92 

"J? max 

-0.101 
-0 .04 
+0.28 

0.6 i 
0.6 1 
0.61 
0.92 
0.92 

Accuracy 

Expa 
1% 
0.1% 
0.1% 
0.1% 
0.1% 
0.1% 
0.1% 

Type 

Constrained 
Constrained 
Free 
Free 
Constrained 
Free 
Constrained 
Free 

N 

4 
5 
5 
6 
6 
7 
8 

10 

x' 
19.9 
16.0 
17.2 
27.4 
29.0 
53.1 
80.9 
46.0 

</,b 

1.24 
1.00 
0.95 
1.10 
1.12 
1.67 
2.02 
1.24 

a T h e values of 77 and the accuracy are the same as for current experi­
menta l measurements of GM, in Table I. 

^ ^ =xVdegrees of freedom. 

where the first term is \GE\^. If we use our restricted GM 
fit of Table IV, the second term is reduced dramatically 
from 130 to 16. We have not calculated the statistical 
errors in these values of G .̂ 

Since the preliminary annihilation experimental re­
sult is G^ of order 5, there is further experimental sup­
port (i.e., besides the recent CEA experiments) for 
restricted fits to both electric and magnetic form factors. 

[Note added in proof. One of us (J.S.L.) and C. P. 
Wang have made restricted fits to form factor data of 
April 1964. The spectral functions are quite similar to 
the restricted fit of Fig. 5; and we find agreement with 
the preliminary experimental value of G .̂] 

IV. TESTS WITH ARTIFICIAL DATA 

In this section we test the extrapolation procedure 
used above for determining spectral functions by apply­
ing the procedure to artificial data based on assumed 
spectral functions. We use 3 different types of spectral 
functions: (i) a single pole, giving a Clementel-Villi form 
factor; (ii) two moderately narrow resonances; (iii) a 
single very broad peak. 

In each case, after assuming the input spectral func­
tion gi{t), we determine the corresponding form factor 
G{t), using an unsubtracted dispersion relation. G{t) is 
evaluated for 20 or more points in a specified range of 
the variable t, and is converted into "pseudo data" by 
adding random errors, of Gaussian distribution and 
predetermined rms value, to each point. We then choose 
value for h for the conformal transformation, fit with 
polynomials (free or constrained) in 77 and extrapolate 
to the semicircle to find the output spectral function 
g{t) with statistical errors Ag. 

Let us first examine how the degree N of the poly­
nomial in 77 depends on the range and accuracy of the 
artificial data. We use a delta function at 7.02/o for the 
input spectral function, and choose ^ = 1 . The range of 
the data in the 77 plane is given in the first two columns 
of Table IX, and the rms percentage error is given in 
the third column. We fit both with free and constrained 
polynomials, and make an analysis in each case of the 
X̂  value against the degree of the polynomial to deter­
mine what value of N to use. (See Table II and the 
related discussion in Sec. III. This procedure of deter­
mining N is followed throughout this section.) The 
values of N, the corresponding x ,̂ and <^=xVd6gi*^ ŝ of 
freedom are given in the last three columns. We see that 
reasonable fits are achieved {(f> near unity) in all cases 
except the constrained octic in the next to the last row. 

The data of the first row have a range and percentage 
accuracy corresponding to the data for GM given in 
Table I. It is of interest to note that both the data of 
Table I and of this row of Table IX are fitted with a 
constrained quartic; i.e., this range and accuracy of data 
contains enough information to determine 3 adjustable 
parameters. The second row gives the range of 77 for 
values of momentum transfer attainable by the Cam-
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T A B L E X . Coefficients for fits to Clementel-Villi forms, an is 
the exact coefficient found from the assumed spectral function. 
The values of an and Afl̂ n for the constrained quart ic are for da ta 
of range and accuracy given by the first row of Table I X . The 
free decic fit is for da ta of range and accuracy given in the last 
row of Table I X . 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

an' 

LOGO 
0.570 

- 0 . 8 1 5 
0.596 

- 0 . 0 3 7 
- 0 . 5 4 3 

0.814 
- 0 . 6 2 1 

0.074 
0.515 

- 0 . 8 1 0 

Constrained quart ic 

an 

1.000 
0.544 

- 1 . 1 6 6 
- 0 . 0 3 0 

0.469 

Aan 

0.000 
0.062 
0.265 
0.142 
0.249 

Free decic 

an 

1.000 
0.572 

- 0 . 7 9 7 
0.611 

- 0 . 2 4 9 
- 0 . 7 5 8 

1.659 
- 0 . 0 3 1 
- 1 . 4 9 6 

0.193 
0.468 

A^n 

0.000 
0.002 
0.006 
0.029 
0.051 
0.117 
0.165 
0.183 
0.229 
0.097 
0.115 

bridge Electron Accelerator, and also assumes improved 
accuracy of 1%. This large increase in range and ac­
curacy gives only one additional parameter. In the last 
row of the table we examine data extending to extremely 
large negative values of /, and also far into the non-
physical region, with 0 . 1 % accuracy. These data deter­
mine 10 adjustable parameters. The main increase in N 
comes from increasing the range of the data. 

In Table X we give the coefficients a^, and diagonal 
errors Aa^ for the constrained quartic and free decic 
fits (first and last rows of Table IX) . I t is of interest 
to compare these coefficients with each other, and also 
with the coefficients an calculated from the input spec­
tral function. Namely, 

an = 2 (tanf i2+CSC^R) sinn^R. (13) 

Here IR and ^R are the positions of the pole, related by 
Eq. (4). For our choice tR=7.02to, and b= 1, the angle 
^R is 135.6°. The assumed delta function in t gives a 
delta function in ^, which clearly has Fourier coefficients 
proportional to sinn^Rj as given above. The factors come 
from changing variables from t to ^. We see that for low 
values of n there is good agreement between an for the 
output spectral function and an for the input spectral 
function. However, the agreement becomes poor for the 
decic fit for 6<n< 10. 

Figures 9(a) and (b) show the spectral functions 
plotted against angle J for the coefficients given in 
Table X. The input spectral function is a delta function, 
at angle ^R= 135.6°, shown in the figure as a vertical 
line. In Fig. 9(a) the solid curve shows a Fourier series 
with exact coefficients an, truncated at iV=4, while the 
dashed line shows the constrained quartic fit to the 
pseudodata with coefficients ^n. We see that each curve 
has a broad peak in the general region of the input 
delta function. There are spurious peaks at other angles, 
and these spurious peaks are stronger for the con­
strained quartic fit. In Fig. 9(b) we see that the solid 
curve for a Fourier series with 10 terms, using the exact 

FIG. 9. Spectral functions for one-pole pseudodata versus angle 
^. The input delta function is shown by the vertical line near 135°. 
The solid curve in 9(a) shows the exact Fourier series truncated 
at 4 terms; the dashed curve shows the constrained quartic fit. 
The solid curve in 9(b) shows the exact Fourier series truncated 
at 10 terms: the dashed curve shows the free-decic fit. See Table X. 

coefficients an does give a rather narrow peak centered 
at the input delta function. The free decic also gives a 
narrow peak at a somewhat smaller angle. The spurious 
peaks are quite marked for the free decic fit. 

All the above results can be interpreted in terms of the 
behavior of truncated Fourier series. First, the main 
peak becomes higher and narrower as we take more 
terms in the series, the width of the peak decreasing 
like 180/iV. Second, the spurious peaks are less promi­
nent if we use the exact coefficients an, since we then 
have destructive interference of the terms of the Fourier 
series. If we introduce errors, giving coefficients an, the 
destructive interference is in general less effective, and 
the spurious peaks become more prominent. Third, there 
is a tendency for the coefficients an to give a peak shifted 
from the input value towards 90°. This tendency is 
exemplified by another treatment of the one-pole arti­
ficial data. 

TABLE XL Single-pole positions and strengths. The pole position 
of the input spectral function is given by Eq. (1.5) for resonance 
energy /i2 = 7.018/o. 

Input peaks at Output peaks at 

135.6° 
101.6° 
52.3° 

127° 
96° 
69° 
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FIG. 10. Spectral functions for constrained-quintic fits to one-
pole pseudodata versus mass of the intermediate state, for three 
choices of the parameter b. The solid curve is for 6 = 1; the dashed 
curve for 6 = 2, and the dot-dash curve for & = 5. The vertical line 
shows the input delta function at 750 MeV. See Table XL 

We now treat one-pole data, of range and accuracy 
given by the second row of Table IX, and examine the 
dependence of the output spectral function on the value 
chosen for the parameter b. The case b=l gives a con­
strained quintic, as shown in Table IX. Choosing b=2 
or b=5 also gives constrained quintic fits. Table XI 
shows that as we vary b over this range, the angular 
position of the input delta function shifts from 135.6° 
to 52.3°. The output spectral function has a main peak 
that shifts position over a somewhat smaller range: 
namely from 127° for 6= 1 to 69° for Z>=5. In all 3 cases 
here, as in two other cases for ^= 1 discussed above, the 
output spectral function tends to have its peak shifted 
towards 90°. We believe that this effect is due to the 
tendency of truncated Fourier series to produce a peak 
near 90°, and the difficulty that a truncated Fourier 
series has in producing a peak either near 0° or near 
180°. For instance, to produce a peak near 180° and a 
zero at 180° the spectral function would have to fall 
very rapidly from the peak to the zero. But it is hard 
for the truncated series to fall very rapidly; therefore 
it is likely that the peak is shifted away from 180°, and 
towards 90°. 

Figure 10 shows the three spectral functions deter­
mined for different choices of b plotted against energy. 
The input delta function at 750 MeV is shown as a 
vertical fine. The three constrained quintic fits to the 
same artificial data, using three different values of 6, 
each give broad peaks in the general region of 750 MeV. 
The soHd line for 6= 1 peaks at 620 MeV, the dashed 
line for 6=2 peaks at 680 MeV, and the dash-dot line 
for 6=5 peaks at 1000 MeV. Of course, these shifts in 
the energy position of the peak correspond exactly to 
the shift of angle towards 90° discussed above. The 
width of the peaks shown in Fig. 10 is in general agree­
ment with our discussion above for the angular width 
of a peak for a truncated Fourier series; e.g., a 36° 
angular width is in fair agreement with the width in 
energy of 500 MeV, for the solid curve. 

We now examine the ''resolving power" of our extra­
polation procedure. That is, if we assume a spectral 

function consisting of two narrow peaks, how well 
separated should the peaks be so that the output 
spectral function will also show two peaks? Figure 11(a) 
shows as a solid line the input spectral function for two 
Lorentzian-shaped peaks of opposite sign located at 
750 MeV and at 1000 MeV. (The Lorentzians are 
modified to vanish and have vanishing slope at threshold 
to.) The artificial data are chosen for the range 
— 5SF-^<t<0, and is assumed to have 1% accuracy. 
We choose 6=2.34 to center the data, and fit with a 
constrained quartic. The output spectral function, 
shown in Fig. 11(a) as a dashed line, is unsuccessful in 
resolving the two peaks. However, it does have a feature 
not generally found in fits to one-pole data; namely, at 
high energy the output spectral function makes a large 
negative excursion. The negative peak is centered at 
3000 MeV [far beyond the limits of Fig. 11(a)] and 
has a value of —0.61, compared with the positive peak 
of 2.0 at 750 MeV. That is, the two input peaks are 
not resolved, but the output spectral function has a 

(a) 

(b) 

FIG. 11. Two-resonance pseudodata spectral functions versus 
mass of the intermediate state. In 11 (a) the input is the solid line, 
and the output, or extrapolated fit, is the dashed line. The same 
notation is used in llCb) for a different input spectral function. 
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new feature that suggests the presence of some structure 
hidden in the main broad peak. 

In Fig. 11(b) we plot as a solid line an input spectral 
function for which the negative peak is more significant 
than in Fig. 11 (a). In this case, the output spectral func­
tion is more nearly successful in resolving the two peaks: 
namely, the output peaks at 550 and 1150 MeV, while 
the input peaks at 650 and 900 MeV. The output is 
forced to increase the separation of the two peaks, since 
a Fourier series with only 4 terms cannot reproduce the 
very sharp variation with angle needed for two peaks 
at the input positions. 

Finally, we apply our method to data based on the 
input spectral function shown as curves in Figs. 12(a) 
and (b). This "smooth spectral function" is chosen to 
have a peak at 750 MeV, with a width of 840 MeV, and 
the threshold behavior of zero slope of our constrained 
polynomial fits. These data are chosen to have the range 
and accuracy given by the second row in Table IX, and 
we choose 6=2. Table XII shows that a constrained 

TABLE XII. Coefficients for smooth spectral function. The 
spectral function is shown in Figs. 12(a) and (b). 

I.6| 

n 

0 
1 
2 
3 
4 

Constrained 
dn 

0.714 
0.968 

-0.224 
"0.349 

0.132 

A^n 

0.002 
0.003 
0.022 
0.018 
0.024 

18.6 
1.10 

Free 
a-n A^n 

0.714 0.002 
0.981 0.005 

-0.221 0.021 
-0.455 0.037 

16.5 
0.97 

quartic or a free cubic give statistically satisfactory fits 
to the data. (For the one-pole spectral function, data of 
this range and accuracy demanded one extra parameter; 
i.e., we fitted with a constrained quintic.) The coeffi­
cients given in Table XII are used to give the spectral 
functions shown in Figs. 12(a) and (b). We see that the 
dots give output spectral function in very good agree­
ment with the input. The error bars for the dots show 
the statistical error in the spectral function for the con­
strained quartic fit; and in general the dots are within 
one standard error of the input value. The output 
spectral function for the free cubic is shown as triangles. 
These triangles give a spurious negative peak just above 
threshold, and also do not fit the input as well in the 
peak region. The threshold behavior shows that using a 
constrained polynomial is worthwhile in this case. The 
behavior of the cubic in the peak region is due to the 
difficulty of fitting the peak with only 3 terms in the 
Fourier series. Use of a constrained polynomial allows 
the determination of a fourth term in a Fourier series, 
with a constraint for the coefficients, thus permitting 
the output spectral function to have a narrower peak. 

It is of interest to examine all the above artificial data 
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FIG. 12. Smooth spectral function. The input is the solid curve; 

the output constrained-quartic fit is given by circles with statistical 
errors, and the output free cubic is given by triangles. 12(a) is a 
plot of spectral function versus angle ^; 12(b) is a plot versus mass 
of the intermediate state. See Table XII. 

again, from the opposite point of view: namely, can we 
achieve a statistically successful fit of the Clementel-
Villi form? For the first case of artificial data based on a 
one-pole spectral function, it is clear that the Clementel-
Villi fit must succeed. In particular, if we use the lowest 
accuracy and lowest range data as given in the first row 
of Table IX, we find a statistically acceptable value of 
X^=21.6 for 18 deg of freedom. The output position of 
the pole is ///o=6.9±0.12, in good agreement with the 
input value of 7.02. 

If we use the spectral function of Fig. 11(a) ,which is 
dominated by a fairly broad resonance at ///o= 7, we 
find that we can fit with a single pole at 4.9/o. The x̂  
value of 18 for 19 deg of freedom is excellent by statisti-
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cal criteria, but is slightly larger than the value of 14.5 
for 17 deg of freedom, for the constrained quartic fit in 
rj given above. 

On the other hand, consider the two-resonance arti­
ficial data for the spectral function shown in Fig. 11(b). 
Here the resonance at higher energy is relatively stronger 
than in Fig. 11(a), so that our fits by conformal trans­
formation almost succeed in resolving the two peaks. 
Also with our value of b, the spectral function goes 
through zero for ^ near 90°, which is not difficult to 
reproduce with a truncated Fourier series. When we try 
to fit the data with a Clementel-Villi form, we immedi­
ately fail, since the pseudodata G(t) are not mono tonic 
in the physical region: G(0) is adjusted to be exactly 
unity, while G(—3/o)= 1.27; for more negative t, G falls 
monotonically with increasing | ^ |. 

Finally, we attempt a one-pole fit to artificial data 
based on our smooth spectral function of Fig. 12. This 
fit is unsuccessful for the range and accuracy chosen 
for the data giving x^= 187, but would be statistically 
acceptable for data of the same range but about 5 % 
accuracy, instead of the 1% accuracy assumed above. 

V. CONCLUSIONS 

We now wish to ask what the results of Sec. I l l allow 
us to deduce about the behavior of the proton form-
factor spectral functions gnit) and ^^(0- In particular, 
we wish to know what significance we should attach to 
the apparent peak below 1 BeV, how confident we can 
be about its position and width, and how seriously we 
should take the change of sign seen above 1 BeV. These 
questions are best considered in the light of experience 
with pseudodata as discussed in Sec. IV. We should 
emphasize that the particular examples quoted in 
Sec. IV and referred to here are merely offered as 
examples of the behavior of various types of pseudodata. 
Our conclusions are in many cases based on a variety of 
such examples showing the same qualitative behavior. 
In discussing the treatment of actual data in Sec. I l l , 
we shall in general refer only to the magnetic form 
factor; the behavior of the electric form factor is 
qualitatively the same. 

The first question is whether the peak seen in Figs. 5 
and 6 is significant. Let us phrase the question in another 
way, since g{t) vanishes at /=/o and / = oo by construc­
tion and thus any spectral function will have a maximum 
somewhere. We wish to ask: Supposing the spectral 
function were everywhere positive and consisted of a 
single very broad peak, would an extrapolation of the 
type carried out in Sec. I l l be likely to yield results of 
the type shown in Figs. 5 and 6? Examination of Fig. 12 
suggests that this is unlikely—that such a spectral 
function would be fairly accurately reproduced. The 
good agreement between input and output in Fig. 12 is 
perhaps a bit misleading, since the function is well 
approximated just by sin?. However, it is in fact true 
that the peak in Fig. 6 also lies near T̂T and it seems 
unlikely that all three curves shown would produce a 

spuriously narrow peak in the same manner. We there­
fore conclude that the data require a large contribution 
to the form factor from a relatively localized region of 
the spectral function. 

If we assume that there is, in fact, a relatively sharp, 
dominant peak, we can then consider its location. 
Experience with attempted extrapolations of one-pole 
pseudodata indicate that such peaks obtained by extra­
polation are displaced from their ^^true" positions as 
functions of J towards JTT. However, in this case the ob­
served positions are at or near fx (because of our choice 
of by although the reason for this choice was quite 
different) and so are probably near to their true value. 
Of the three fits shown in Figs. 5 and 6, probably the 
constrained and restricted quintic is most plausible. In 
discussing the position we must also take account of 
the width. A wide peak will behave like a 8 function at 
a position below its maximum. I t seems clear that an 
extrapolation with so few terms can only give an upper 
limit for the width as seen in the fits of one pole pseudo-
data. Bearing these points in mind we deduce from our 
results that there exists a peak of unknown width (less 
than that of 350 MeV shown in the extrapolation) and 
position about 625 MeV (f=j7r) with a considerable 
uncertainty (of the order of 150 MeV). This position is 
in quite reasonable agreement with the p—co mixture 
assumed in fact to dominate gM^. 

As regards the negative excursion above 1 BeV, it 
seems Hkely that it is a significant effect. I t is true that 
a similar behavior is obtained in Fig. 10 when a single 
8 function is fitted at about the same mass as the p meson 
with 5 = 5 . However, in this case, the position of the pole 
corresponds to J = 69°. In order for a positive peak to 
occur at all at such a low angle the dominant term has 
to be sin2§, and this causes the negative excursion in 
Fig. 10. As pointed out above, the experimental data 
indicate a peak at JTT which would need no even terms at 
all, in principle, and in fact they are small. Furthermore, 
even in the example where a quintic fit to a pole at the 
p mass does introduce a spurious negative excursion it 
occurs at an energy appreciably higher than in the 
quintic fit to the experimental data. 

We cannot make any strong statements about the 
structure of this negative component. If we identify the 
main peak with the p and co mesons, it is possible to 
speculate whether the 0 is responsible for the higher 
mass negative component. The results shown in Fig. 
11(a) based on a spectral function representing roughly 
the p—w and 0 contributions are quite similar to the 
constrained quartic fit achieved for the experimental 
data. 

The conclusions we can draw about the spectral 
function are essentially the same as those obtained by 
the two-pole fits to the data discussed in the Introduc­
tion. The dominance of a peak near the p—co mass and 
the change in sign of the spectral function above 1 BeV, 
consistent with an appreciable contribution from the 
(j) meson. We have therefore gained no new information 
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by using the full analytic properties of G, However, this 
information has been gained without at any stage having 
to insert any external assumptions about the nature of 
the spectral function, such as the position of the p—co 
peak; we are led directly by the data and our extrapola­
tion procedure to infer a low-energy positive contribu­
tion and a higher energy negative one. 

Clearly, with better measurements we should be able 
to say more about the spectral function. From the dis­
cussion of Sec. IV it is clear that increased range is much 
more important than increased accuracy: The former 
allows more coefficients to be determined, while the 
latter merely increases the accuracy with which the 
same number can be determined. Increased range is 
being provided by measurements at the Cambridge 
Electron Accelerator, ̂ ^ ^ind by measurements^^ of 
proton-antiproton annihilation to electron-positron 
pairs. I t would be possible to express the cross sections 
directly as power series in r? and fit them by this method 
instead of first deducing form factors. This should im­
prove the accuracy of the fits; as indicated above this 
in itself will probably not shed much more fight on the 
spectral function, but it does mean that measurements 
can then be incorporated for values of t at which there 
are not enough data to determine the form factors with 
any accuracy. Of course it would be of interest to 
examine the isoscalar and isovector spectral functions 
separately, as improved neutron data become available. 
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APPENDIX: LEAST-SQUARES FITS 
WITH CONSTRAINTS 

We give first a summary of the usual theory of statisti­
cal curve fitting.^^ Suppose we make m measurements 
of some quantity y which is a function f{x; ai, • • • a^) of 
one variable x and N parameters ar. The measurements 
ji are made at points Xi subject to experimental errors 
Si. Let p(ai,- ' -an] xi^yi'^'^i) be the probability of observ­
ing the value yi a t the point x ,̂ if the experimental error 
is Zi and the values of the parameters are (Zi • • • a^, 
Assuming the observations to be independent, the com­
bined probability that the actual observations should 
have occurred depends on the values av - -a^ and the 

1̂  See, for instance, J. Orear, University of California Radiation 
Laboratory Report No. UCRL-8417, 1958 (unpublished), or 
M. G. Kendall and A. Stuart, The Admnced Theory of Statistics 
(Hafner Publishing Company, New York, 1961), Vol. 2, Chap. 19. 

m 

P(ai'' 'aN) = Jlp{avaN]x^]yi]z^), (Al) 

We define 
m 

M = — l n P = — 5 Z lnp(fl^r • 'aN]Xi]yi]z^) , (A2) 
1 = 1 

whose minimum gives the maximum value of P, We 
find this minimum by setting 

dM/dar=0, r=l, '" N, (A3) 

and let aj^ be the values of ar for which (A3) are satisfied. 
These are then the best values of the parameters ar, and 
the best interpolation or extrapolation for the function 
/ is f(x,ai^' • -ajv^). In order to estimate the error on 
this extrapolation we expand M about the point a^ ;̂ 
setting ar=ar^+Aar: to the lowest order 

/ dm \o 
M=M'+Z{ jAarAas, 

rs \dardas/ 
(A4) 

where the superscript 0 indicates the value at the maxi­
mum point. 

We set IIrs= (dm/dardas)^; H is therefore a sym­
metric numerical matrix calculated from the experi­
mental observations. Hence, there must be some or­
thogonal matrix D which diagonalizes H 

D H D ^ - h , 

firs rlrf^Ts J 

(A5) 

and we may set hn = 1/Xr̂ . If we were to choose a new 
set of parameters 

br=J^sDrsas (A6) 
we would have 

M^M'+ZriAbr/Xr? 

provided we have been justified in neglecting higher 
terms. We could write 

P{bv ' -5;̂ )̂ = const exp[—Xr(A6rAr)^] 

= constn, e x p [ - (Abr/Xryi. (A7) 

Since P is essentially the combined probability dis­
tribution for the bro, we conclude that the br are inde­
pendently Gaussian with mean br^ and rms error X,-. 
Hence, if g(bi' • -bj^) is some quantity depending on the 
br, the error in g corresponding to an error Abr is 
(dg/dbr)Abr and its rms value is 

(dg/dbrXAbr}=Xr(dg/dbr), 

The over-all rms error in g from its best value g(br^) is 

r / agyY/2 p eg dg-f^' 
A g = Z X . — = E — X . 2 5 . . — 

L r \ dbr/ J Lrs dbr dbsJ 

dg ag-ll/2 

{= 
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Now since b and a are linearly related, 

Thus, g=g{a^) with an rms error 

r dg 5 g t ' ' 
<Ag)= E — H . „ - ^ — . (A9) 

L tu dat dauJ 

Htu~^ is thus the error matrix associated with the 
parameters a, 

We now may ask for a similar determination subject 
to c constraints. 
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and if the errors in y are Gaussian, 

0a(^l* • •^iv) = 0 , a=l"'C, (AlO) 

This is easily done using Lagrange multipliers ju by 
replacing M by M\ where 

M'=ikr+LM«0a, (All) 

and setting 
dM'/dar==0, dM'/dficc=0, (A12) 

Formally, we may regard M' as being the likehhood 
function associated with the N+c free parameters 
a r • 'CN, Ml* * 'Mc- Accordingly, all of the above analysis 
of error can be carried over exactly as before. The 
matrix H is an {N+c)X (N+c) partitioned matrix: 

- [ d(l)a/das 0 
(A13) 

r = l 

The constraints are 

0a = Z) karCl'r~da=0, 
r==l 

(A15) 

(A16) 

Thus, 

M'=Y: 
"L (^rfr{Xi)—yi' 
r = l 

+ Z ) Ma(Z) katar—dcc); 

if we define aN^i=^fxi, we can write this compactly as 

(A17) 
N+c N+c 

r,s~l r=l 

where 

K'as 

J r\Xi) J s\Xi) 

zr 
kar 

OJ 

Hrs — 

^ r = [ L fT{0Cr)yi/z^^, da~], 
(A18) 

F ^ E {ji/zi)' r= 1, • • 'N\ 5= 1, • • 'N\ Q:= 1- • 'C. The derivatives are 
evaluated at the point determined by (A12). From 
(A9) we see that the error matrix associated with the ^^^^ -̂ĵ ^ solution to (A12) is 
constrained a's is simply the top NXN minor of the 
matrix H~ ,̂ since g does not depend explicitly on the jua. ^+« 

The formulation becomes very simple for linear least-
squares fits and linear constraints. In this case 

2v H-^ being the error matrix. Thus, we see that the only 
f{x,ai'' 'aN) = J^ arfr{oc) (A14) modification necessary to an ordinary linear least-

'•"'̂  squares fit is a simple extension of the matrix H. 

(A19) 


